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Abstract 
Song popularity is an influential subject within the modern music streaming industry. It determines which artists can 

gain media attraction, gather loyal fans, and ultimately succeed. Analyzing song popularity with ML algorithms 

contributes to demystifying success within the music industry. Two datasets, datasets 1 and 2, collected from the 

Spotify Web API contain audio information on respectively 2000 songs and 240,057 songs. Ordinary Least Squares 

Linear Regression (OLS LR) and Neural Network (NN) algorithms were used on each dataset to predict song 

popularity. The most complex NN structure used in this study contains three hidden layers, achieving the best 

regression performances on both datasets; however, it was superior to other models by a small margin. Overall, 

models trained with dataset 2 achieved superior results, particularly in the R^2 metrics, but were unimpressive due 

to low regression metrics. 

 

Introduction 
Music entertainment has had a substantial influence on various aspects of society over time. The creation of music 

dates to tens of thousands of years ago; flutes made of bone and ivory were found in a cave in Germany by 

archaeologists, which were believed to demonstrate signs of the “well-established musical tradition” present within 

human society at the time (Wilford, 2009). Methods of musical expressions have evolved drastically since. 

Technological inventions continuously push forward the limits and bounds of musical creation and enjoyment, and 

with the internet boom in the 21st century, every aspect of music entertainment has been thoroughly revolutionized. 

 

Within recent years, the music industry has become dominated by subscription-based music streaming services. 

“Music streaming in the U.S. contributed $14.32 billion to the U.S. gross domestic product (GDP) in 2021”, stated 

Digital Media Association (Stoner & Dutra, 2023). The industry is currently led by companies like Spotify and 

Apple Music, who stand as the pioneers of this new modern streaming model for music enjoyment.  

 

The success of streaming services simultaneously fostered the rise and evolution of digital music. Streaming 

services allowed for the transition from music downloads and enabled users to access high-quality music with 

minimal effort and waiting time, drastically increasing overall accessibility to music. The new era of digital music 

additionally enables the usage of data-driven approaches for enhancing customer experiences. Through collecting 

and analyzing vast amounts of customer data, companies like Spotify have developed recommendation algorithms 

capable of understanding users' music consumption behaviors. This enables Spotify to provide features such as 
“Spotify Blend” which generates personalized playlists for one or more users that fit their taste, “Enhance Playlist” 

which adds new songs to a playlist, and numerous other algorithm-driven features (Inside Spotify’s Data Mission, 

2017).  

 

By focusing the research on the analysis of audio data collected by Spotify, this study can imitate the research that 

has already been done by music streaming companies like Spotify but remained confidential; however, given the 

substantially higher volumes of data accessible by corporate entities, the volume of data is likely a limited factor for 

this study. 

 

If Machine Learning or other regression algorithms can reasonably predict song popularity using audio features, 

there are substantial implications for not only corporate entities but also individual artists. Music streaming 

platforms capable of predicting hits can selectively promote songs to garner more users and media attention. On the 

other hand, artists who hope to increase their popularity can use ML algorithms as either a preemptive popularity 

analysis or as a guiding tool during the song creation process. 



 

 

If the prediction of song popularity is inaccurate or unreliable, it can be concluded that audio features alone cannot 

reasonably explain the complexity of music popularity. This may be due to the taste of the population being too 

overly diverse, which could result in difficulties grasping correlations. Or the relative objectiveness of audio features 

is unable to explain popularity given its subjective nature. 

 

Using audio feature data collected by Spotify, this study analyzes the modern trend in music with the utilization of 

Machine Learning algorithms and linear regression models. The overarching research topic is whether the popularity 

of a song can be predicted by using its musical metrics. Specifically, the objective of this study is to 1) understand 

how attributes contribute to the popularity of songs; 2) understand the complexity of the problem by applying the 

same algorithms to different numbers of samples.  

 

Methods 
Data Information 
Two datasets of varying magnitudes were selected to understand the complexity of the subject in relation to the data 

volume. The datasets are labeled as dataset 1 and dataset 2. 

 

Dataset 1 
Dataset 1 is Top Hits Spotify from 2000-2019 from the open Kaggle database (Koverha, 2022). This dataset is 

sourced from the official Spotify Web API. It contains 18 song attributes and 2000 samples. Each sample 

corresponds to one of the top 2000 tracks from 2000-2019. The summary of the 18 song attributes contained in 

Dataset 1 is shown in Table 1. 

 

Table 1. Track Attributes Information for Top Hits Spotify from 2000-2019. Documentation is collected from 

official Spotify Web API documentation (https://developer.spotify.com/documentation/web-api) and Kaggle dataset 

documentation. 

Attribute Mean Standard 

Deviation 

Description Data Type 

Artist N/A N/A Name of artist String 

Song N/A N/A Name of track String 

Duration_ms 228748.125 39136.569 Duration of the track in milliseconds Integer 

Explicit N/A N/A Whether or not the track has explicit 

lyrics. Explicit lyrics are denoted 

with True. Non-explicit lyrics are 

False. 

Boolean 

Year 2009.494 5.860 The release year of the track Integer 

Popularity 59.873 21.336 The popularity of the album. The 

value will be between 0 and 100, 

with 100 being the most popular. 

Integer 

Danceability 0.667 0.140 Danceability describes how suitable 

a track is for dancing based on a 

combination of musical elements 

including tempo, rhythm stability, 

beat strength, and overall regularity. 

Float 

Energy 0.720 0.152 Energy is a measure from 0.0 to 1.0 

and represents a perceptual measure 

of intensity and activity. 

Float 

Key 5.378 3.615 The key the track is in. Integers map 

to pitches using standard Pitch Class 

notation. 

Integer 

Loudness -5.512 1.933 The overall loudness of a track in 

decibels (dB).   

Float 

https://developer.spotify.com/documentation/web-api
https://en.wikipedia.org/wiki/Pitch_class
https://en.wikipedia.org/wiki/Pitch_class


 

 

Mode 0.554 0.497 Mode indicates the modality (major 

or minor) of a track. Major is 

represented by 1 and minor is 0. 

Binary 

Speechiness 0.104 0.0962 Speechiness detects the presence of 

spoken words in a track.   

Float 

Acousticness 0.0962 0.173 A confidence measure from 0.0 to 

1.0 of whether the track is acoustic. 

1.0 represents high confidence the 

track is acoustic. 

Float 

Instrumentalness 0.0152 0.0878 Predicts whether a track contains no 

vocals. 

Float 

Liveness 0.181 0.141 Detects the presence of an audience 

in the recording. Higher liveness 

values represent an increased 

probability that the track was 

performed live. 

Float 

Valence 0.552 0.221 A measure from 0.0 to 1.0 that 

describes the musical positiveness 

conveyed by a track. Tracks with 

high valence sound more positive, 

while tracks with low valence sound 

more negative. 

Float 

Tempo 120.122 26.967 The overall estimated tempo of a 

track in beats per minute (BPM). 

Float 

Genre N/A N/A Genre of the track. String 

 

Dataset 2 
Dataset 2 is Spotify Audio Features from the Kaggle database (Tomigelo, 2019). This dataset contains two sets of 

data retrieved from the Spotify API. The first set contains 130,326 unique songs retrieved in April 2019. The second 

set contains 116,191 unique songs retrieved in November 2018. The two sets were combined into a single dataset of 

of 247,035 samples. The 17 attributes contained in this dataset are described in Table 2. 

 

Table 2. Track Attributes Information for Spotify Audio Features. 

Attribute Mean Standard 

Deviation 

Description Data Type 

Artist_name N/A N/A   Name of artist String 

Track_id N/A N/A Name of track String 

Track_name N/A N/A Name of track String 

Duration_ms 212592.159 123705.356 Duration of the track in milliseconds Integer 

Popularity 24.221 

 

18.895 

 

The popularity of the album. The 

value will be between 0 and 100, with 

100 being the most popular. 

Integer 

Danceability 0.582 0.190 Danceability describes how suitable a 

track is for dancing based on a 

combination of musical elements 

including tempo, rhythm stability, 

beat strength, and overall regularity. 

Float 

Energy 0.570 0.259 Energy is a measure from 0.0 to 1.0 

and represents a perceptual measure 

of intensity and activity. 

Float 

Key 5.236 0.603 The key the track is in. Integers map 

to pitches using standard Pitch Class 

notation. 

Integer 

https://en.wikipedia.org/wiki/Pitch_class
https://en.wikipedia.org/wiki/Pitch_class


 

 

Loudness -9.960 6.525 The overall loudness of a track in 

decibels (dB).   

Float 

Mode 0.608 0.488 Mode indicates the modality (major or 

minor) of a track. Major is 

represented by 1 and minor is 0. 

Binary 

Speechiness 0.112 0.124 Speechiness detects the presence of 

spoken words in a track.   

Float 

Acousticness 0.339 0.344 A confidence measure from 0.0 to 1.0 

of whether the track is acoustic. 1.0 

represents high confidence the track is 

acoustic. 

Float 

Instrumentalness 0.227 0.362 Predicts whether a track contains no 

vocals. 

Float 

Liveness 0.195 0.168 Detects the presence of an audience in 

the recording. Higher liveness values 

represent an increased probability that 

the track was performed live. 

Float 

Valence 0.439 0.259 A measure from 0.0 to 1.0 that 

describes the musical positiveness 

conveyed by a track. Tracks with high 

valence sound more positive, while 

tracks with low valence sound more 

negative. 

Float 

Tempo 119.535 30.156 The overall estimated tempo of a 

track in beats per minute (BPM). 

Float 

Time_signature 119.535 0.512 Genre of the track. String 

 

Kaggle Notebook, a cloud computational environment, is used for data preprocessing and the implementation of 

regression models such as linear regression and neural networks. All processing was done with Python 3.7. The 

performance of models trained separately on each dataset will be compared to understand how the quantity of data 

affects regression performance,  

 

Data Preprocessing 

 

Data Quality 
Both datasets were examined using the built-in Kaggle data viewer and the Pandas library. Results show that there 

are no missing data points.  

 

Feature Selection 
Both datasets contain several attributes that only contributed to song identification (e.g., song names, artists names, 

and track_id). These attributes do not contribute to the analysis of song popularity and are excluded from both 

datasets. 

 

Data Cleaning 
In dataset 1, the genre column contained default values that were excluded from the dataset. In addition, 63.95% of 

songs in dataset 1 were categorized into more than one genre (e.g.“pop, hip hop, and R&B). New identical samples 

except with singular genres were added to reduce the number of unique categorical values. For example, a single 

song can be categorized into pop, hip hop, and R&B. The song would then be replaced by three samples containing 

identical audio attributes but with their genres being respectively pop, hip hop, and R&B. 

 

One-Hot-Encoding  



 

 

In dataset 1, the one-hot-encoding technique was used on the genre column to obtain usable data. Each unique genre 

string value was assigned a new column with binary values such that the data could contribute to Machine Learning 

algorithm analysis. 

 

Outlier Treatment 
For song attributes in numerical format (integer or float) in both datasets, outlier treatment was independently 

applied on each of the columns. The mean and standard deviation of each numerical column were computed to 

detect outliers. The standard deviation defined as:  

𝑆𝐷  =  √ 
∑ (𝑥𝑖 − 𝑥)2 
 

𝑁
  

where N is the total number of observations and 𝑥 is the mean.  

 

For each column, values 3 standard deviations distant from the mean were detected as outliers. The outlier criteria 

were chosen as such to account for the high variability within the dataset. An outlier boundary of 3 standard 

deviations identifies a reasonable proportion of 2% ~ 6% of the two datasets as outliers. After applying the method, 

217/3,682 outliers were excluded from dataset 1, and 5,022/247,035 outliers were excluded from dataset 2. 

 

Linear Regression 
Linear regression is a model that uses a linear relationship to predict the relationship between variables. 

Train Test Split 
The train-test ratio used for linear regression is 75:25. 

Metric  
The Scikit-learn library is used to execute a simple ordinary least squares linear regression (OLS). In OLS, the 

coefficient of determination (𝑅2) serves as the evaluation metric. 𝑅2 is defined as: 

𝑅2 =
∑ (𝑦𝑖 − 𝑓𝑖)

2 
 𝑖

∑ (𝑦𝑖 − 𝑦)2 
 𝑖

 

where 𝑓 is the predicted value by the model and 𝑦 is the mean of the observed data.  

Neural Networks 
In this study, NN structures are built using the Sequential class from the Keras Library. Models are trained and 

compiled with a mean squared error (MSE) loss function, the conventional choice for regression. In addition to the 

loss function, the scikit-learn library is used to calculate 𝑅2 (coefficient of determination) and mean absolute error 

(MAE), both as metrics to assess the performance of a model. 

 

K-Fold Cross-validation  
Cross-validation is used as a data resampling technique to iteratively partition the data into train and test portions.  

4-fold cross-validation was used for both dataset 1 and dataset 2 to train and evaluate NNs. 

 

Data Scaling 
Using the StandardScalar module in the Scikit-learn library, features were scaled before being used for the cross-

validation process. 

 

Optimizer Algorithms 
Adaptive moment estimation (Adam), stochastic gradient descent (SGD), and root mean square propagation 

(RMSprop) optimizers were compared during NN development. SGD optimizer was chosen as the optimal optimizer 

due to its superior efficiency during training. 

 

Neural Network Structures 



 

 

Model structures with variable parameters were tested at three separate levels of complexity: one, two, and three 

hidden layers. Within each level, the model that produced the highest metrics (R^2) was chosen to be shown below. 

 

Model A: 1 hidden layer 

The development of the NN model began with a model containing three dense layers, an input layer, a hidden layer, 

and an output layer. The input layer and output layer contain nodes adjusted to the same number of nodes as 

respectively the number of features and labels. One hidden layer of 16 nodes using the RELU activation function 

was placed between the input and output layers. Batch normalization layers were placed after each hidden layer. The 

optimizer used is SGD with a learning rate of 0.001 and momentum of 0.4. 40 epochs were used, and an early 

stopping regularization with a patience of 5 epochs was implemented. 

 

Model B: 2 Hidden Layers 

Model B was built with an input layer, two hidden layers using the RELU activation function, and an output layer. 

Input and output layers are adjusted to the same number of nodes as respectively the number of feature and label 

columns. The first hidden layer contains 16 nodes while the second contains 32 nodes. Batch normalization layers 

are placed after each hidden layer. The optimizer used is SGD with a learning rate of 0.0001 and momentum of 0.4. 

50 epochs were used, and an early stopping regularization with a patience of 5 epochs. 

 
Model C: 3 Hidden Layers 

Model C was developed with an input layer, three hidden layers using the RELU activation function, and an output 

layer. Input and output layers are adjusted to the same number of nodes as respectively the number of feature and 

label columns. The first hidden layer contains 16 nodes; the second and third hidden layers contain 32 nodes. Batch 

normalization layers are placed after each hidden layer. The optimizer used is SGD with a learning rate of 0.0001 

and momentum of 0.4. 70 epochs were used, and an early stopping regularization with a patience of 5 epochs. 

 

Results 
Linear Regression 
Dataset 1 and dataset 2 were independently split into train and test data. The linear regression model is fitted on the 

train data and evaluated on the test data. The results are shown in Table 1. 
 

Table 1. Linear Regression performances in cross-validation. 

Regression Metrics OLS2 Linear Regression 

Dataset 1 Dataset 2 

R^2 

0.0166 0.0843 

MAE1 14.593 14.669 

1Mean Absolute Error  

2Orindary Least Square 

 

Neural Network 

Dataset 1 and dataset 2 were separately used to train and evaluate each NN model (model A, model B, and model 

C). The cross-validation results are shown in Table 2. 
 

  



 

 

Table 2. Neural Network performances in cross-validation.  

 Neural Network Models 

Regression 

Metrics 

Model A Model B Model C 

Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2 

R^2 0.00750 

 ± 0.00421 

0.133  

± 0.00433 

 0.00750  

± 0.0109 

0.133 

 ± 0.00433 

0.0250 

± 0.0364 

0.135 

±0.00412 

MAE2 
14.325  

± 0.313 

14.293  

± 0.0245 

14.377  

± 0.332 

14.293  

± 0.0245 

 14.306  

± 0.435 

14.176  

± 0.0446 

 

Discussion 

Evaluating regression models (LR, NN) trained on dataset 1, NN model C achieved the highest R^2 of 0.0250  

± 0.0364 while all LR and NN models achieved comparable MAE, averaging 14.400. This suggests that the 

complexity of model C enabled it to further grasp the relationship between features and labels; however, the 

resulting improvement in popularity prediction was non-substantial. 

 

Examining regression models (LR, NN) trained on dataset 2, NN model C achieved the highest R^2 of 0.135 ± 

0.00412 and MAE of 14.176 ± 0.0446, while LR achieved R^2 of 0.0843 and MAE of 14.669.    

 

Comparing the performance of NN separately on each dataset, models trained on dataset 2, which contain a greater 

number of samples, have shown significantly higher R^2 regression metrics than models trained on dataset 1. The 

model with the highest R^2 values for both datasets, NN model C, achieved an R^2 value 0.11 greater for dataset 2 

than dataset 1. However, the relative difference in MAE between the two datasets is only 0.917% for the same 

model. 

 

The best-performing model by a small margin, model C trained with dataset 2, achieved results that were not 

exceptionally high. An MAE of 14.176 and an R^2 of 0.135 is low under the consideration that the output value, 

popularity, is a value between 0 and 100, and R^2 of 0.135 indicates only 13.5% of the variability of the output 

variable around its mean is explained by the model. 

 

Numerous methods were applied to improve the likelihood of regression models grasping the relationships between 

the audio features and the popularity. During data preprocessing, outliers for columns in both datasets were detected 

and excluded to increase the signal-to-raise ratio and emphasize the central contributing factor to popularity in both 

datasets. Features were scaled before cross-validation to normalize the range of values and improve the stableness 

and efficiency of NNs. During NN training, batch normalization layers re-center and re-scale the input for the 

subsequent hidden layer to further stabilize training, which can improve NN performances.  

 

Interpretations 
The results confirm several hypothesized relationships. In this study, the audio features of a song could not 

reasonably predict its popularity. This aligns with the hypothesis that the pattern in popularity may be overly 

complex or diverse as the Machine Learning models in this study were unable to extract clear variable correlations 

in the datasets. Reliable predictions of popularity will require additional data beyond audio features, which is 

addressed in Related & Future Studies. 

In addition, increases in dataset sizes showed substantial improvement in the R^2 metric and could suggest that the 

trend within music popularity will become apparent in larger sample sizes. The structural complexity in Neural 

Networks were not strongly associated with performance gain. Addressing limitations in future studies may result in 

more conclusive insights on the importance of model complexity in the context of predicting music popularity.  



 

 

Limitations 

The low regression performance of this study can be reasonably attributed to three limiting factors: 1) the inherent 

complexity of music popularity, 2) the selection of data, and 3) the selection of ML algorithms.  

Because popularity is a product of countless factors, “External” factors such as a song suddenly going viral on social 

media due to a particular influencer, or a particular genre gaining traction in music communities can substantially 

impact the popularity of a song while being nearly independent of the audio features. Furthermore, audio features do 

not include information on traits such as sentiments and lyrics. These traits can provide additional details and 

contribute to more comprehensive representations of songs. 

 

The performance of models is highly dependent on the data available for analysis. Both the quantity and the 

selection of data are significant factors in contributing to the extent to which regression models can grasp 

relationships between features and labels, as shown by the result comparison between dataset 1 and 2. Both datasets 

used for analysis are both collected from the Official Spotify Web API; however, the context of the data collected is 

not perfectly consistent. Dataset 1 contains the top 2000 songs from 2000~2019 on Spotify; dataset 2 contains data 

on 240,000+ songs of varying popularity, collected in 2018 and 2019. The difference in context resulted in a 

different sample of song chosen; as a result, the mean popularity in dataset 1 is 35.652 higher than that of dataset 2, 

which could have influenced the results. 

 

In this study, OLS LR and NN are the only ML algorithms utilized for analysis. As a result, there may be a 

possibility that other ML regression algorithms are more suitable for the analysis of song popularity due to their 

unique characteristics. The diverse tastes of music enjoyers may have resulted in more segmented patterns between 

features and labels, resulting in the underperformance of LR and NN.  

 

Related & Future Studies 
Recent studies have investigated the effect of feature selection on the accuracy of ML algorithms when applied to 

classifying popularity, using logistic regression algorithms, random forest algorithms, and k-nearest neighbor 

algorithms. (Khan et al., 2022). The selection of features with only high correlation has been shown to produce 

comparable performance to algorithms without feature selection, with the benefits of reduced computation time. 

 

A future study would be to utilize a large master dataset for analysis. This dataset would contain a larger number of 

songs collected from the Spotify Web API under the same context, e.g. randomly collecting a data sample of 500,000 

songs from the Spotify Web API. The study can apply sentimental lyrical analysis and other similar techniques to 

expand the scope of features. Metrics that measure current trends, public opinions, artist popularities, or other external 

factors should be considered in the analysis as well to improve regression performance. 

 

The master dataset can be used to create subsets of varying magnitudes of volume such that a selection of regression 

methods, with additional ML algorithms that may be more suitable, can be applied to each subset separately. 

 

 

Conclusion 
In this study, the relative performance of regression algorithms (LR, NN) on two datasets with different magnitudes 

of data volume, dataset 1 with 2000 samples and dataset 2 with 247,035 samples, were compared. Results show that 

NN model C, the most complex regression model used, performed the best on dataset 2 with a coefficient of 

determination of 0.1325 and MAE of 14.176. However, the performance of NN model C on dataset 2 is only 

superior to the performance of other models, trained on either dataset, by a small margin. Overall, the regression 

models (LR, NN) used in this study underperformed when trained independently on both dataset 1 and 2, reflecting 

the complex relationship between music popularity and song attributes. The component of human behavior is 

hypothesized to be a key factor contributing to the low predictability of music popularity achieved with LR and NN; 

the subjectiveness of song popularity cannot be fully represented by the audio features alone. Future studies can 

utilize more refined data collection techniques and a greater variety of ML algorithms to analyze the influence of 

data volume on popularity prediction performance and further dissect the popularity of music.  
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